
CS106B
Spring 2012

Handout #09
April 13, 2012

Assignment 2: Fun with Collections

The idea for Random Writer comes from Joe Zachary at the University of Utah.
Parts of this handout were written by Julie Zelenski and Jerry Cain.

Now that you’ve been introduced to the handy Stanford C++ class library, it’s time to put these objects
to work! In your role as a client of these collections classes with the low-level details abstracted away,
you can put your energy toward solving more interesting problems. In this assignment, your job is to
write two short client programs that use these classes to do nifty things. The tasks may sound a little
daunting at first, but given the power tools in your arsenal, each requires only a page or two of code.
Let’s hear it for abstraction!

This assignment has several purposes:

1. To let you experience more fully the joy of using powerful library classes.

2. To stress the notion of abstraction as a mechanism for managing data and providing
functionality without revealing the representational details.

3. To increase your familiarity with using C++ class templates.

4. To give you some practice with classic data structures such as the stack, queue, vector, map,
and lexicon.

Due Monday, April 23 at 10:00AM
YEAH Hours: Wednesday, April 18 from 4:15 – 5:45 in 370-370

Problem 1. Word ladders

A word ladder is a connection from one word to another formed by changing one letter at a time with
the constraint that at each step the sequence of letters still forms a valid word. For example, here is a
word ladder connecting "code" to "data".

code → core → care → dare → date → data

That word ladder, however, is not the shortest possible one. Although the words may be a little less
familiar, the following ladder is one step shorter:

code → cade → cate → date → data

Your job in this problem is to write a program that finds a minimal word ladder between two words.
Your code will make use of several of the ADTs from Chapter 5, along with a powerful algorithm
called breadth-first search to find the shortest such sequence. Here, for example, is a sample run of the
word-ladder program in operation:

- 1 -

A sketch of the word ladder implementation

Finding a word ladder is a specific instance of a shortest-path problem, in which the challenge is to
find the shortest path from a starting position to a goal. Shortest-path problems come up in a variety of
situations such as routing packets in the Internet, robot motion planning, determining proximity in
social networks, comparing gene mutations, and more.

One strategy for finding a shortest path is the classic algorithm known as breadth-first search, which is
a search process that expands outward from the starting position, considering first all possible solutions
that are one step away from the start, then all possible solutions that are two steps away, and so on,
until an actual solution is found. Because you check all the paths of length 1 before you check any of
length 2, the first successful path you encounter must be as short as any other.

For word ladders, the breadth-first strategy starts by examining those ladders that are one step away
from the original word, which means that only one letter has been changed. If any of these single-step
changes reach the destination word, you’re done. If not, you can then move on to check all ladders that
are two steps away from the original, which means that two letters have been changed. In computer
science, each step in such a process is called a hop.

The breadth-first algorithm is typically implemented by using a queue to store partial ladders that
represent possibilities to explore. The ladders are enqueued in order of increasing length. The first
elements enqueued are all the one-hop ladders, followed by the two-hop ladders, and so on. Because
queues guarantee first-in/first-out processing, these partial word ladders will be dequeued in order of
increasing length.

To get the process started, you simply add a ladder consisting of only the start word to the queue.
From then on, the algorithm operates by dequeueing the ladder from the front of the queue and
determining whether it ends at the goal. If it does, you have a complete ladder, which must be
minimal. If not, you take that partial ladder and extend it to reach words that are one additional hop
away, and enqueue those extended ladders, where they will be examined later. If you exhaust the queue
of possibilities without having found a completed ladder, you can conclude that no ladder exists.

It is possible to make the algorithm considerably more concrete by implementing it in pseudocode,
which is simply a combination of actual code and English. The pseudocode for the word-ladder
problem appears in Figure 1.

As is generally the case with pseudocode, several of the operations that are expressed in English need
to be fleshed out a bit. For example, the loop that reads

for (each word in the lexicon of English words that differs by one letter)

is a conceptual description of the code that belongs there. It is, in fact, unlikely that this idea will
correspond to a single for loop in the final version of the code. The basic idea, however, should still
make sense. What you need to do is iterate over all the words that differ from the current word by one
letter. One strategy for doing so is to use two nested loops; one that goes through each character
position in the word and one that loops through the letters of the alphabet, replacing the character in
that index position with each of the 26 letters in turn. Each time you generate a word using this
process, you need to look it up in the lexicon of English words to make sure that it is actually a legal
word.

- 2 -

Figure 1. Pseudocode implementation of the word-ladder algorithm

Create an empty queue.
Add the start word to the end of the queue.
while (the queue is not empty) {
 Dequeue the first ladder from the queue.
 if (the final word in this ladder is the destination word) {
 Return this ladder as the solution.
 }
 for (each word in the lexicon of English words that differs by one letter) {
 if (that word has not already been used in a ladder) {
 Create a copy of the current ladder.
 Add the new word to the end of the copy.
 Add the new ladder to the end of the queue.
 }
 }
}
Report that no word ladder exists.

Another issue that is a bit subtle is the restriction that you not reuse words that have been included in a
previous ladder. One advantage of making this check is that doing so reduces the need to explore
redundant paths. For example, suppose that you have previously added the partial ladder

cat → cot → cog

to the queue and that you are now processing the ladder

cat → cot → con

One of the words that is one hop away from con, of course, is cog, so you might be tempted to enqueue
the ladder

cat → cot → con → cog

Doing so, however, is unnecessary. If there is a word ladder that begins with these four words, then
there must be a shorter one that, in effect, cuts out the middleman by eliminating the unnecessary word
con. In fact, as soon as you’ve enqueued a ladder ending with a specific word, you never have to
enqueue that word again.

The simplest way to implement this strategy is to keep track of the words that have been used in any
ladder (which you can easily do using another lexicon) and ignore those words when they come up
again. Keeping track of what words you’ve used also eliminates the possibility of getting trapped in an
infinite loop by building a circular ladder, such as

cat → cot → cog → bog → bag → bat → cat

One of the other questions you will need to resolve is what data structure you should use to represent
word ladders. Conceptually, each ladder is just an ordered list of words, which should make your mind
scream out “Vector!” (Given that all the growth is at one end, stacks are also a possibility, but vectors
will be more convenient when you are trying to print out the results.) The individual components of
the Vector are of type string.

Implementing the application

At this point, you have everything you need to start writing the actual C++ code to get this project
done. It’s all about leveraging the class library—you’ll find your job is just to coordinate the activities

- 3 -

of various different queues, vectors, and lexicons necessary to get the job done. The finished
assignment requires less than a page of code, so it’s not a question of typing in statements until your
fingers get tired. It will, however, certainly help to think carefully about the problem before you
actually begin that typing.

As always, it helps to plan your implementation strategy in phases rather than try to get everything
working at once. Here, for example, is one possible breakdown of the tasks:

• Task 1—Try out the demo program. Play with the demo just for fun and to see how it works
from a user’s perspective.

• Task 2—Read over the descriptions of the classes you’ll need. For this part of the assignment,
the classes you need from Chapter 5 are Vector, Queue, and Lexicon. If you have a good
sense of how those classes work before you start coding, things will go much more smoothly
than they will if you try to learn how they work on the fly.

• Task 3—Think carefully about your algorithm and data-structure design. Be sure you
understand the breadth-first algorithm and what data types you will be using.

• Task 4—Play around with the lexicon. The starter project for this problem includes a copy of
the EnglishWords.dat file described in the reader. Before you write the word ladder
application, you might experiment with a simpler program that uses the lexicon in simpler
ways. For example, you might write a program that reads in a word and then prints out all the
English words that are one letter away.

• Task 5—Implement the breadth-first search algorithm. Now you’re ready for the meaty part.
The code is not long, but it is dense, and all those templates will conspire to trip you up. We
recommend writing some test code to set up a small dictionary (with just ten words or so) to
make it easier for you to test and trace your algorithm while you are in development. Test your
program using the large dictionary only after you know it works in the small test environment.

Note that breadth-first search is not the most efficient algorithm for generating minimal word ladders.
As the lengths of the partial word ladders increase, the size of the queue grows exponentially, leading
to exorbitant memory usage when the ladder length is long and tying up your computer for quite a
while examining them all. Later this quarter, we will touch on improved search algorithms, and in
advanced courses such as CS161 you will learn even more efficient alternatives.

Problem 2. Random language generation using models of English text

In the past few decades, computers have revolutionized student life. In addition to providing no end of
entertainment and distractions, computers also have also facilitated much productive student work.
However, one important area of student labor that has been painfully neglected is the task of filling up
space in papers, Ph.D. dissertations, grant proposals, and recommendation letters with important
sounding and somewhat sensible random sequences. Come on, you know the overworked
TA/professor/reviewer doesn’t have time to read too closely. . . .

To address this burning need, the random writer is designed to produce somewhat sensible output by
generalizing from patterns found in the input text. When you’re coming up short on that 10-page paper
due tomorrow, feed in the eight pages you already have written into the random writer, and—Voila!—
another couple of pages appear. You can even feed your own .cpp files back into your program and
have it build a new random program on demand.

- 4 -

How does random writing work?

Random writing is based on an idea advanced by Claude Shannon in 1948 and subsequently
popularized by A. K. Dewdney in his Scientific American column in 1989. Shannon’s famous paper
introduces the idea of a Markov model for English text. A Markov model is a statistical model that
describes the future state of a system based on the current state and the conditional probabilities of the
possible transitions. Markov models have a wide variety of uses, including recognition systems for
handwriting and speech, machine learning, and bioinformatics. Even Google’s PageRank algorithm
has a Markov component to it. In the case of English text, the Markov model is used to describe the
possibility of a particular character appearing given the sequence of characters seen so far. The
sequence of characters within a body of text is clearly not just a random rearrangement of letters, and
the Markov model provides a way to discover the underlying patterns and, in this case, to use those
patterns to generate new text that fits the model.

First, consider generating text in total randomness. Suppose you have a monkey at the keyboard who
is just as likely to hit any key as another. While it is theoretically possible—given enough monkeys,
typewriters, and ages of the universe—that this sort of random typing would produce a work of
Shakespeare, most output will be gibberish that makes pretty unconvincing English:

No model aowk fh4.s8an zp[q;1k ss4o2mai/

A simple improvement is to gather information on character frequency and use that as a weight for
choosing the next letter. In English text, not all characters occur equally often. Better random text
would mimic the expected character distribution. Read some input text (such as Mark Twain’s Tom
Sawyer, for example) and count the character frequencies. You’ll find that spaces are the most
common, that the character e is fairly common, and that the character q is rather uncommon. Suppose
that space characters represent 16% of all characters in Tom Sawyer, e just 9%, and q a mere .04% of
the total. Using these weights, you could produce random text that exhibited these same probabilities.
It wouldn’t have a lot in common with the real Tom Sawyer, but at least the characters would tend to
occur in the proper proportions. In fact, here’s an example of what you might produce:

Order 0
rla bsht eS ststofo hhfosdsdewno oe wee h .mr ae irii ela
iad o r te u t mnyto onmalysnce, ifu en c fDwn oee iteo

This is an order-0 Markov model, which predicts that each character occurs with a fixed probability,
independent of previous characters.

We’re getting somewhere, but most events occur in context. Imagine randomly generating a year’s
worth of Fahrenheit temperature data. A series of 365 random integers between 0 and 100 wouldn’t
fool the average observer. It would be more credible to make today’s temperature a random function
of yesterday’s temperature. If it is 85 degrees today, it is unlikely to be 15 degrees tomorrow. The
same is true of English words: If this letter is a q, then the following letter is quite likely to be a u. You
could generate more realistic random text by choosing each character from the ones likely to follow its
predecessor.

For this, process the input and build an order-1 model that determines the probability with which each
character follows another character. It turns out that s is much more likely to be followed by t than y
and that q is almost always followed by u. You could now produce some randomly generated Tom
Sawyer by picking a starting character and then choosing the character to follow according to the
probabilities of what characters followed in the source text. Here’s some output produced from an
order-1 model:

- 5 -

Order 1
"Shand tucthiney m?" le ollds mind Theybooure He, he s
whit Pereg lenigabo Jodind alllld ashanthe ainofevids tre
lin--p asto oun theanthadomoere

This idea extends to longer sequences of characters. An order-2 model generates each character as a
function of the two-character sequence preceding it. In English, the sequence sh is typically followed
by the vowels, less frequently by r and w, and rarely by other letters. An order-5 analysis of Tom
Sawyer reveals that leave is often followed by s or space but never j or q, and that Sawye is always
followed by r. Using an order-k model, you generate random output by choosing the next character
based on the probabilities of what followed the previous k characters in the input text. This string of
characters preceding the current point is called the seed.

At only a moderate level of analysis (say, orders 5 to 7), the randomly generated text begins to take on
many of the characteristics of the source text. It probably won’t make complete sense, but you’ll be
able to tell that it was derived from Tom Sawyer as opposed to, say, Pride and Prejudice. At even
higher levels, the generated words tend to be valid and the sentences start to scan. Here are some more
examples:

Order 2

"Yess been." for gothin, Tome oso; ing, in to weliss of
an'te cle -- armit. Papper a comeasione, and smomenty,
fropeck hinticer, sid, a was Tom, be suck tied. He sis
tred a youck to themen

Order 4

en themself, Mr. Welshman, but him awoke, the balmy
shore. I'll give him that he couple overy because in
the slated snufflindeed structure's kind was rath. She
said that the wound the door a fever eyes that WITH him.

Order 6

Come -- didn't stand it better judgment; His hands and
bury it again, tramped herself! She'd never would be.
He found her spite of anything the one was a prime
feature sunset, and hit upon that of the forever.

Order 8

look-a-here -- I told you before, Joe. I've heard a pin
drop. The stillness was complete, how- ever, this is
awful crime, beyond the village was sufficient. He
would be a good enough to get that night, Tom and Becky.

Order 10

you understanding that they don't come around in the
cave should get the word "beauteous" was over-fondled,
and that together" and decided that he might as we used
to do -- it's nobby fun. I'll learn you."

A sketch of the random writer implementation

Your program is to read a source text, build an order-k Markov model for it, and generate random
output that follows the frequency patterns of the model.

First, you prompt the user for the name of a file to read for the source text and reprompt as needed until
you get a valid name. (And you probably have a function like this lying around somewhere.) Now ask
the user for what order of Markov model to use (a number from 1 to 10). This will control what seed
length you are working with.

Use simple character-by-character reading on the file. As you go, track the current seed and observe
what follows it. Your goal is to record the frequency information in such a way that it will be easy to
generate random text later without any complicated manipulations.

- 6 -

Once the reading is done, your program should output 2000 characters of random text generated from
the model. For the initial seed, choose the sequence that appears most frequently in the source (e.g., if
you are doing an order-4 analysis, the four-character sequence that is most often repeated in the source
is used to start the random writing). If there are several sequences tied for most frequent, any of them
can be used as the initial seed. Output the initial seed, then choose the next character based on the
probabilities of what followed that seed in the source. Output that character, update the seed, and the
process repeats until you have 2000 characters.

For example, consider an order-2 Markov model built from this sentence from Franz Kafka’s
Metamorphosis:

As Gregor Samsa awoke one morning from uneasy dreams he found himself
transformed in his bed into a gigantic insect.

Here is how the first few characters might be chosen:

• The most commonly occurring sequence is the string "in", which appears four times. This
string therefore becomes the initial seed.

• The next character is chosen based on the probability that it follows the seed "in" in the source.
The source contains four occurrences of "in", one followed by g, one followed by t, one
followed by s, and one followed by a space. Thus, there should be a 1/4 chance each of
choosing g, t, s, or space. Suppose space is chosen this time.

• The seed is updated to "n ". The source contains one occurrence of "n ", which is followed by
h. Thus the next character chosen is h.

• The seed is now " h". The source contains three occurrences of " h", once followed by e, and
twice followed by i. Thus, there is a 1/3 chance of choosing e and 2/3 for i. Imagine i is
chosen this time.

• The seed is now "hi". The source contains two occurrences of "hi", once followed by m, the
other by s. For the next character, there is 1/2 chance of choosing m and 1/2 chance for s.

If your program ever gets into a situation in which there are no characters to choose from (which can
happen if the only occurrence of the current seed is at the exact end of the source), your program can
just stop writing early.

A few implementation hints

Although it may sound daunting at first glance, this task is supremely manageable with the bag of
power tools you bring to the job site.

• Map and Vector are just what you need to store the model information. The keys into the map
are the possible seeds (e.g., if the order is 2, each key is a 2-character sequence found in the
source text). The associated value is a vector of all the characters that follow that seed in the
source text. That vector can—and likely will—contain a lot of duplicate entries. Duplicates
represent higher probability transitions from this Markov state. Explicitly storing duplicates is
the easiest strategy and makes it simple to choose a random character from the correct
frequency distribution. A more space-efficient strategy would store each character at most
once, with its frequency count. However, it’s a bit more awkward to code this way. You are
welcome to do either, but if you choose the latter, please take extra care to keep the code clean.

• Determining which seed(s) occurs most frequently in the source can be done by iterating over
the entries once you have finished the analysis.

- 7 -

• To read a file one character at a time, you can use the get member function for ifstream like
this:
 char ch;

 while (input.get(ch)) {

 /* … process ch … */

 }

This will read the file one character at a time, executing the loop until no more characters can
be read.

Random writer task breakdown

A suggested plan of attack that breaks the problem into the manageable phases with verifiable
milestones:

• Task 1—Try out the demo program. Play with the demo just for fun and to see how it works
from a user’s perspective.

• Task 2—Review the collection classes described in Chapter 5. The primary tools you need for
this problem are Vector and Map from the Stanford C++ libraries. Once you’re familiar with
what functionality our classes provide, you’re in a better position to figure out what you’ll need
to do for yourself.

• Task 3—Design your data structure. Think through the problem and map out how you will
store the analysis results. It is vital that you understand how to construct the nested
arrangement of string/vector/map objects that will properly represent the information. Since the
Map will contain values that are Vectors, a nested template type is in your future.

• Task 4—Implement analyzing source text. Implement the reading phase. Be sure to develop
and test incrementally. Work with small inputs first. Verify your analysis and model storage is
correct before you move on. There’s no point in trying to generate random sentences if you
don’t even have the data read correctly!

• Task 5—Implement random generation. Now you’re ready to randomly generate. Since all the
hard work was done in the analysis step, generating the random results is straightforward.

You can run the random writer program on any sort of input text, in any language! The web is a great
place to find an endless variety of input material (blogs, slashdot, articles, etc.) When you’re ready for
a large test case, Project Gutenberg maintains a library of thousands of full-length public-domain
books. We’ve supplied you with files containing the text of Twain’s Tom Sawyer, William
Shakespeare’s Hamlet, and George Eliot’s Middlemarch—all of which come from Project Gutenberg.
At higher orders of analysis, the results the random writer produces from these sources can be
surprisingly sensible and often amusing.

- 8 -

Possible extensions

There are many extensions you could think about introducing into the random writer program—most of
which will also make it easier for you to generate a contest entry. One possibility is to extend the
Markov model so that the individual units are words rather than characters. Another is to write a
program that runs the Markov model in the opposite direction, in which the goal is to recognize an
author by his or her characteristic patterns. This requires building multiple Markov models, one for
each candidate author, and comparing them to an unattributed text to find the best match. This sort of
“literary forensic analysis” has been used to try to determine the correct attribution for texts where the
authorship is unknown or disputed.

References

1. A. K. Dewdney. A potpourri of programmed prose and prosody. Scientific American, 122-TK,
June 1989.

2. C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27,
1948.

3. Wikipedia on Markov models (http://en.wikipedia.org/wiki/Markov_chain) .

4. Project Gutenberg’s public domain e-books (http://www.gutenberg.org) .

- 9 -

